Generalized weak Galerkin finite element methods for biharmonic equations
نویسندگان
چکیده
The generalized weak Galerkin (gWG) finite element method is proposed and analyzed for the biharmonic equation. A new discrete second order partial derivative introduced in gWG scheme to allow arbitrary combinations of piecewise polynomial functions defined interior on boundary general polygonal or polyhedral elements. error estimates are established numerical approximation a H2 norm L2 norm. results reported demonstrate accuracy flexibility our
منابع مشابه
A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations
This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...
متن کاملEffective implementation of the weak Galerkin finite element methods for the biharmonic equation
The weak Galerkin (WG) methods have been introduced in [11, 16] for solving the biharmonic equation. The purpose of this paper is to develop an algorithm to implement the WG methods effectively. This can be achieved by eliminating local unknowns to obtain a global system with significant reduction of size. In fact this reduced global system is equivalent to the Schur complements of the WG metho...
متن کاملWeak Galerkin Finite Element Method for Second Order Parabolic Equations
We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...
متن کاملFinite Element Methods for Biharmonic Problem
and Applied Analysis 3 Let EI and EB be the set of interior edges and boundary edges of Th, respectively. Let E EI ∪ EB. Denote by v the restriction of v to Ki. Let e eij ∈ EI with i > j. Then we denote the jump v and the average {v} of v on e by v |e v ∣ ∣ ∣ e −v ∣ ∣ ∣ e , {v}|e 1 2 ( v ∣ ∣ ∣ e v ∣ ∣ ∣ e ) . 2.4 If e ei ∈ EB, we denote v and {v} of v on e by v |e {v}|e v ∣ ∣ ∣ e . 2.5
متن کاملGalerkin Finite Element Methods for Nonlinear Klein-gordon Equations
We consider Galerkin finite element methods for the nonlinear Klein-Gordon equation, giving the first optimal-order energy norm semidiscrete error estimates for non-Lipschitz nonlinearity. The result holds quite generally in one and two space dimensions and under a certain growth restriction in three. We also discuss some time stepping strategies and present numerical results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2023
ISSN: ['0377-0427', '1879-1778', '0771-050X']
DOI: https://doi.org/10.1016/j.cam.2023.115353